Componentnet: Processing U- and V-components for spatio-Temporal wind speed forecasting

نویسندگان

چکیده

The increasing presence of intermittent renewables in modern power systems motivates the development methods for forecasting. More accurate forecasts may implicate less operational costs systems. In this context, paper proposes a family architectures based on fully convolutional neural networks wind speed prediction, ComPonentNet (CPNet) family. CPNet produces multi-site spatio-temporal forecasting phenomena which be decomposed into multiple components (e.g., wind, u- and v-wind). includes three - core CPNet, fully-fused bottom-fused CPNet. Each architecture processes phenomenon different manner separate branches operations, same branch, or mixing joint branches. This investigates performance each speed. Moreover, framework is compared against U-Net architecture. results indicate that proposed promising, splitting processing beneficial to forecasting, with outperform U-Net.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wind speed forecasting using spatio-temporal indicators

Abstract. From small farms to electricity markets the interest and importance of wind power production is continuously increasing. This interest is mainly caused by the fact that wind is a continuous resource of clean energy. To take full advantage of the potential of wind power production it is crucial to have tools that accurately forecast the expected wind speed. However, forecasting the win...

متن کامل

Improved Spatio-Temporal Linear Models for Very Short-Term Wind Speed Forecasting

In this paper, the spatio-temporal (multi-channel) linear models, which use temporal and the neighbouring wind speed measurements around the target location, for the best short-term wind speed forecasting are investigated. Multi-channel autoregressive moving average (MARMA) models are formulated in matrix form and efficient linear prediction coefficient estimation techniques are first used and ...

متن کامل

Very Short-Term Wind Speed Forecasting Using Spatio-Temporal Lazy Learning

A wind speed forecast corresponds to an estimate of the upcoming production of a wind farm. The paper illustrates a variant of the Nearest Neighbor algorithm that yields wind speed forecasts, with a fast time resolution, for a (very) short time horizon. The proposed algorithm allows us to monitor a grid of wind farms, which collaborate by sharing information (i.e. wind speed measurements). It a...

متن کامل

Evaluation of Optimal Fuzzy Membership Function for Wind Speed Forecasting

In this paper, a new approach is proposed in order to select an optimal membership function for inputs of wind speed prediction system. Then using a fuzzy method and the stochastic characteristics of wind speed in the previous year, the wind speed modeling is performed and the wind speed for the future year will be predicted. In this proposed method, the average and the standard deviation of in...

متن کامل

Comparison of Models for Wind Speed Forecasting

In this paper an ARIMA model is used for time-series forecast involving wind speed measurements. Results are compared with the performance of a back propagation type NNT. Results show that ARIMA model is better than NNT for short time-intervals to forecast (10 minutes, 1 hour, 2 hours and 4 hours). Data was acquired from a unit located in Southern Andalusia (Peñaflor, Sevilla), with a soft orog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electric Power Systems Research

سال: 2021

ISSN: ['1873-2046', '0378-7796']

DOI: https://doi.org/10.1016/j.epsr.2020.106922